EPA/CPG Modeling Meeting LPR/NB RI/FS Hydrodynamic and Sediment Transport Modeling Nov 14, 2013 ## **Overview** - Model version used for HD/ST projection runs presented to EPA HQ - CPG and EPA ST model comparison - Current status of HD/ST models ## **Model Version for Projection Runs** - Model version used for projection runs presented to EPA HQ - Hydrodynamic model developed by EPA (Jan 2008) - Sediment transport model same as described in the Jan 2013 memo "Status of the CPG's Sediment Transport Model" - Applied over WY1995 to WY2012 Model-data comparisons over range of discharges, from low-flows to extreme events (Mar 2010 16,000 cfs event; Hurricane Irene) - Suspended solids time-series from ABS/OBS, water samples - Solids fluxes - Bathymetric change - Reproduces major processes - Estuarine processes intra- and inter-tidal variability in TSS, tidal pumping, exchange with Newark Bay - □ Scour during high-flow events and infilling during low-flow periods - Applied to 1950s post-dredge condition test of infilling following last major dredging event - Received EPA comments on Jan 2013 memo in April 2013 - □ No major criticisms on model formulations, inputs, or behavior (processes/results) - Several minor comments, currently being reviewed/implemented # **Model Version for Projection Runs (Contd.)** - Except as noted below, parameterization and inputs as described in Jan 2013 memo - Bathymetry within navigation channels in Newark Bay (and Kills) modified to reflect 50' post-deepening conditions (developed by EPA based on design depths) - Projection runs hot-started using restart files at the end of WY2012 # **EPA-CPG Sediment Transport Models** ### Major features of EPA* and CPG sediment transport models | CPG Model | EPA Model* | |--|--| | ECOM-SEDZLJS Two layer bed model with Fluff layer for intra-tidal suspended solids dynamics – parameterized from an analysis of PWCM TSS data, consistent with Gust microcosm data Underlying less erodible layer, predominantly active during events – parameterized using LPR Sedflume data, with critical shear stress profile calibrated within range of data 2 cohesive and 3 non-cohesive classes Class-specific constant settling velocity for cohesives Decoupled hydrodynamics and sediment with bathymetric feedback via continuity correction (~15 days on average) Sediment initial conditions for grain size distribution and dry density based on distinction inside/outside former navigation channel and spatial averages | ECOM-SEDZLJS Two layer bed model with Fluff layer for intra-tidal suspended solids dynamics – parameterized using Gust microcosm data Underlying less erodible layer, predominantly active during events – based on data from LPR consolidation experiments 1 cohesive and 3 non-cohesive classes Concentration-dependent settling velocity for cohesive class Coupled hydrodynamics and sediment transport with frequent (every 10 timesteps) bathymetric feedback Sediment initial conditions for grain size distribution and dry density applied over geomorphic units | | pretation based on "Report of the Peer Review of Sediment Transport, Organic Carbon and Contaminant Fate and Transport Model", Sep 20 | | # CPG Hydro/Sed. Transport Model – Current Status #### LPR model refinement - Bathymetry - Bed bulk density profile - Grain size distribution at solids boundaries - Dundee Dam solids boundary condition rating curve #### Linked calibration with the CFT model - o HD & ST model comparison to salinity and TSS data from CWCM events - Analysis of ship-track data and propeller scour LPR and NB - Newark Bay system understanding and model development - Wave model - Analysis of Sedflume data - o Refinement of model initial conditions (bed grain size distribution, dry density) - o 2012 bathymetry - Model calibration and validation